Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects.

TitleFluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects.
Publication TypeJournal Article
Year of Publication1998
AuthorsYang, J-S, Swager, TM
JournalJournal of the American Chemical Society
Volume120
Pagination11864–11873
ISSN0002-7863
Keywordsphenyleneethynylene polymer TNT chemosensor
Abstract

The synthesis, spectroscopy, and fluorescence quenching behavior of pentiptycene-derived phenyleneethynylene polymers, 1-3, are reported. The incorporation of rigid three-dimensional pentiptycene moieties into conjugated polymer backbones offers several design advantages for solid-state (thin film) fluorescent sensory materials. First, they prevent $π$-stacking of the polymer backbones and thereby maintain high fluorescence quantum yields and spectroscopic stability in thin films. Second, reduced interpolymer interactions dramatically enhance the soly. of polymers 1-3 relative to other poly(phenyleneethynylenes). Third, the cavities generated between adjacent polymers are sufficiently large to allow diffusion of small org. mols. into the films. These advantages are apparent from comparisons of the spectroscopic and fluorescence quenching behavior of 1-3 to a related planar electron-rich polymer 4. The fluorescence attenuation (quenching) of polymer films upon exposure to analytes depends on several factors, including the exergonicity of electron transfer from excited polymer to analytes, the binding strength (polymer-analyte interactions), the vapor pressure of the analyte, and the rates of diffusion of the analytes in the polymer films. Films of 1-3 are particularly selective toward nitro-arom. compds. The dependence of fluorescence quenching on film thickness provides an addnl. criterion for the differentiation of nitro-arom. compds. from other species, such as quinones. In short, thinner films show a larger response to nitro-arom. compds., but show a lower response to quinones. Such differences are explained in terms of polymer-analyte interactions, which appear to be electrostatic in nature. The rapid fluorescence response (quenching) of the spin-cast films of 1-3 to nitro-contg. compds. qualifies these materials as promising TNT chemosensory materials. [on SciFinder(R)]

DOI10.1021/JA982293Q